陶瓷文物修复是文物保护研究中一项重要内容,对碎片分类可提高修复效率。针对人工标注分类耗时长、效率低、主观因素大等问题,该文基于对比学习方法对陶瓷显微图像进行分类,然而,传统的SimCLRa simple framework for contrastive learning of visual representations对比学习网络不能精准提取陶瓷显微图像细节,因此,该文将SimCLR网络与多尺度方法结合,对陶瓷显微图像进行分类。首先,将采集到的陶瓷显微图像进行增强并提取特征,在特征提取模块使用多尺度卷积操作替换SimCLR中的标准卷积,使得网络具有更大的感受野,提取到更加准确的特征信息;其次,使用多层感知机MLP将提取到的特征进行降维处理,提高后续计算效率;最后,使用归一化温度标度的交叉熵损耗对模型进行优化。实验结果表明,改进后的网络在陶瓷显微图像分类中比原始网络准确率提高18%,达到986%,且网络参数只增加了0.11 m。该方法能以较小的代价有效对陶瓷碎片分类,辅助文物修复。